The motion of heated nonvolatile particles in compressible gaseous media is investigated in the case where their surface temperature is much greater than the temperature of the surrounding medium at infinity.

Aerosol particles suspended in gas mixtures of nonuniform temperature and concentration are acted upon by forces produced by thermal and concentration stresses, which can impart an ordered motion to the particles [1-4]. The motion acquired by particles in a field of external temperature and concentration gradients is called thermodiffusophoretic motion $[1,2]$. If the motion of the particles is induced by internal heat sources of electromagnetic origin, it is called photophoretic motion [3, 4].

The motion of particles for small relative temperature differences in the immediate surroundings has been investigated in sufficient detail in papers published to date on the theory of thermodiffusophoretic and photophoretic motion [1-4]. It is important from the theoretical and practical standpoint to study the laws governing the motion of particles when their mean surface temperature is much greater than the ambient temperature. The particles can be subjected to strong heating in an electromagnetic field as in, e.g., the laser sensing of clouds and fogs [5].

In the present article we formulate (in the Stokes approximation) a theory of photophoretic, thermophoretic, and diffusophoretic motion of large and moderate-size solid aerosol. particles whose mean surface temperature differs significantly from the ambient temperature. We analyze the particle transport process at thermal and diffusion Peclet numbers much smaller than unity. We solve the gasdynamic equations with allowance for the compressibility of the gaseous medium and a power-law temperature dependence of the transfer coefficients. We assume that $k_{e} \ll k^{\prime}$. We solve the problem in spherical coordinates with origin at the center of the representative particle.

The distribution of the fields U, P, T_{e}, T^{\prime}, and $C_{1 e}$ are described by the system of equations

$$
\begin{gather*}
\frac{\partial}{\partial x_{i}}\left(\rho U_{i}\right)=0, \frac{\partial}{\partial x_{i}} P=\frac{\partial}{\partial x_{j}}\left\{\mu\left[\frac{\partial U_{i}}{\partial x_{j}}+\frac{\partial U_{j}}{\partial x_{i}}-\frac{2}{3} \delta_{i j} \frac{\partial U_{k}}{\partial x_{k}}\right]\right\} \tag{1}\\
\operatorname{div}\left(x_{e} \nabla T_{e}\right)=0, \quad \operatorname{div}\left(x^{\prime} \nabla T^{\prime}\right)=-q_{i} \tag{2}\\
\operatorname{div}\left(\frac{n^{2} m_{2} D_{m_{1}}}{\rho} \nabla C_{1 e}\right)=0 \tag{3}
\end{gather*}
$$

The system (1)-(3) is solved subject to the boundary conditions $[3,6,7]$

$$
\begin{gather*}
U_{r}=\left.\frac{C_{v}^{*}}{R^{2}} \frac{v}{T_{e}}\left(\frac{\partial^{2} T_{e}}{\partial \Theta^{2}}+\operatorname{ctg} \Theta \frac{\partial T_{e}}{\partial \Theta}\right)\right|_{r=R} \tag{4}\\
U_{\theta}=C_{m}^{*}\left[r \frac{\partial}{\partial r}\left(\frac{U_{\theta}}{r}\right)+\frac{1}{r} \frac{\partial U_{r}}{\partial \Theta}\right]+K_{T s} \frac{v}{R T_{e}}\left(1+\frac{\beta_{R}^{*}}{R}+\right. \\
\left.+\sigma_{\mathbf{T}} \frac{\beta_{R}^{*}}{R}\right) \frac{\partial T_{e}}{\partial \Theta}+K_{D s} \frac{D}{R}\left(1+\frac{\beta_{R c}^{*}}{R}+\sigma_{c} \frac{\beta_{R c}^{*}}{R}\right) \frac{\partial C_{1 e}}{\partial \Theta}-K_{T s} \frac{v}{2 T_{e}} \\
\left(\frac{1}{r^{2}} \frac{\partial^{2} T_{e}}{\partial r \partial \Theta}+r \frac{\partial}{\partial r}\left(\frac{1}{r^{2}} \frac{\partial T_{e}}{\partial \Theta}\right)\right) \times \beta_{D}^{*}-K_{D s} \frac{D}{2} \beta_{5 c}^{*} \times\left.\left(\frac{1}{r^{2}} \frac{\partial^{2} C_{1 e}}{\partial r \partial \Theta}+r \frac{\partial}{\partial r}\left(\frac{1}{r^{2}} \frac{\partial C_{1 e}}{\partial \Theta}\right)\right)\right|_{r=R} \tag{5}
\end{gather*}
$$

State Pedagogical Institute, Tambov, Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 54, No. 4, pp. 628-635, April, 1988. Original article submitted February 24, 1986.

$$
\begin{gather*}
T_{e}-T^{\prime}=\left.K_{T} \frac{\partial T_{e}}{\partial r}\right|_{r=R},\left.\quad P\right|_{r \rightarrow \infty}=P_{0},\left.T^{\prime}\right|_{r \rightarrow 0} \neq \infty, \tag{6}\\
T_{e \mid r \rightarrow \infty}=T_{e \infty}+\left|V T_{e \infty}\right| r \cos \Theta,\left.\quad U_{r}\right|_{r \rightarrow \infty}=\left(\mathbf{U}_{\infty} n_{z}\right) \cos \theta, \tag{7}\\
-x_{e} \frac{\partial T_{e}}{\partial r}+x^{\prime} \frac{\partial T^{\prime}}{\partial r}=-\left.\frac{C_{q}^{*}}{R^{2}} x_{e}\left(\operatorname{ctg} \Theta \frac{\partial T_{e}}{\partial \Theta}+\frac{\partial^{2} T_{e}}{\partial \Theta^{2}}\right)\right|_{r=R}, \tag{8}\\
\left.C_{1 e}\right|_{r \rightarrow \infty}=C_{1 \infty}+\left|\nabla C_{1 \infty}\right| r \cos \theta,\left.\quad U_{\theta}\right|_{r \rightarrow \infty}=-\left(\mathbf{U}_{\infty} \mathbf{n}_{z}\right) \sin \theta, \tag{9}
\end{gather*}
$$

where

$$
\sigma_{\mathrm{T}}=\left.\left(\frac{\partial^{2} T_{e}}{\partial r \partial \Theta}\right)\left(\frac{1}{R} \frac{\partial T_{e}}{\partial \Theta}\right)\right|_{r=R} ^{-1}, \quad \sigma_{\mathrm{G}}=\left(\frac{\partial^{2} C_{1 e}}{\partial r \partial \theta}\right)\left(\frac{1}{R} \frac{\partial C_{1 e}}{\partial \Theta}\right)_{r=R}^{-1} .
$$

Expressions for the distributions of the fields t_{e}, t_{i}, and $C_{i e}$ are obtained in the course of solving the system of equations (2), (3) by separation of variables:

$$
\begin{gather*}
t_{e}=t_{e 0}+\frac{1}{t_{e 0}^{\alpha}}\left(\sum_{n=1}^{\infty} \frac{\Gamma_{n} P_{n}}{y^{n+1}}+\left|\nabla t_{e \infty}\right| R y \cos \Theta\right), \tag{10}\\
t_{i}=t_{i 0}+\frac{1}{t_{00}^{p}}\left(\sum_{n=1}^{\infty}\left\{B_{n} y^{n}+\frac{y^{-(n+1)}}{2 n+1} \int_{1}^{0} f_{n} y^{n} d y-\frac{1}{2 n+1}\left[y^{n} \int_{1}^{y} \frac{f_{n}}{y^{n+1}} d y-\frac{1}{y^{n+1}} \int_{i}^{y} f_{n} y^{n} d y\right]\right\} P_{n}\right), \tag{11}\\
C_{1 e}=C_{1 \infty}+\left(\frac{\Psi_{2} \cos \Theta}{y^{2}} 3 R\left|\nabla C_{1 \infty}\right|+\sum_{n=1}^{\infty} \frac{M_{n} P_{n}}{y^{n+1}}\right) \Psi_{1} \tag{12}
\end{gather*}
$$

where $P_{n}=P_{n}(\cos \theta)$ denotes the Legendre polynomials, $y=r / R, t_{e}=T_{e} / T_{e \infty}$

$$
\begin{gather*}
t_{\mathrm{e} 0}=\left(1+\frac{\Gamma_{0}}{y}\right)^{\frac{1}{1+\alpha}}, \quad f_{0}=-\frac{R^{2}}{2 x_{i}} y^{2} \frac{\gamma+1}{T_{e \infty}} \int_{-1}^{1} q_{i} d(\cos \theta), t_{i}=\frac{T^{\prime}}{T_{e \infty}}, \\
f_{n \geqslant 1}=- \tag{13}\\
x_{n} \frac{R^{2}}{x_{i} T_{e \infty}} y^{2} \frac{2 n+1}{2} \int_{-1}^{1} q_{i} P_{n} d(\cos \theta), \Psi_{1}=\sum_{n=0}^{\infty} \Delta_{n} l^{n}, \\
t_{i 0}=\left(B_{0}+\frac{1}{y} \int_{i}^{0} f_{0} d y-\frac{1}{y} \int_{i}^{y} f_{0} d y+\int_{j}^{y} \frac{f_{0}}{y} d y\right)^{\frac{1}{1+\gamma}}, \\
\Psi_{2}=\Gamma_{0}^{3}\left(\frac{1}{3 l^{3}}+\left(\frac{\Omega_{1}}{2}-1\right) \frac{1}{l^{2}}+\left(1-2 \Omega_{1}+\Omega_{2}\right) \frac{1}{l}+\ln l\left(-\Omega_{1}+\right.\right. \\
\left.\left.+2 \Omega_{2}-\Omega_{3}\right)+\sum_{n=1}^{\infty}\left(-\Omega_{n+1}+2 \Omega_{n+2}-\Omega_{n+3}\right) \frac{l^{n}}{n}\right) .
\end{gather*}
$$

In Eqs. (12) and (13) the variable $\ell=\Gamma_{0} /\left(y+\Gamma_{0}\right)$. The values of Δ_{n} and Ω_{n} are determined by means of recursion relations, in which $\Delta_{0}=\Omega_{0}=1, \Delta_{-1}=\Omega_{-1}=0$:

$$
\begin{gather*}
\stackrel{\Delta_{n}}{n \geqslant 1}=\frac{1}{n(n+3)}\left\{(n+1)\left[2(n-1)-\frac{\omega}{1+\alpha}\right] \Delta_{n-1}+(n-2)\left[1-n+\frac{\omega}{1+\alpha}\right] \Delta_{n-2}\right\}, \tag{14}\\
\Omega_{n \geqslant 1}=\frac{1}{n} \sum_{k=0}^{n-1}\left\{(k-2 n) \Delta_{n-k}+\left[2 n-k-2-\frac{\omega}{1+\alpha}\right] \Delta_{n-k-1}\right\} \Omega_{k} . \tag{15}
\end{gather*}
$$

Because of the small temperature asymmetry $\kappa_{e} \ll \kappa^{\prime}$, the coefficient D is estimated according to the relation $D=D_{\infty} t^{1+\omega}$ in the determination of the field $C_{1 e}$. This dependence is taken into account in the solution of the diffusion equation. The thermodiffusophoretic force and velocity are determined by constants Γ_{1} and M_{1}, which are equal to

$$
\begin{equation*}
\Gamma_{1}=\left|\nabla t_{e \infty}\right| R b_{3}+\frac{t_{e 0}^{\alpha}}{b_{2} t_{i 0}^{\prime}} \int_{1}^{0} f_{1} y d y, \quad M_{1}=-3 R b_{5}\left|\nabla C_{1 \infty}\right|, \tag{16}
\end{equation*}
$$

where

$$
\begin{gather*}
b_{\langle | y=1}=\Psi_{1}^{1} \Psi_{2}+\Psi_{2}^{1} \Psi_{1}-2 \Psi_{1} \Psi_{2}, K_{T 0}=\left.K_{T}\right|_{t_{e}=t_{e s}}, t_{e s}=\left.\frac{T_{10}}{T_{e \infty}}\right|_{y=1}, \\
\left.b_{0}\right|_{y=1}=\left[1+\frac{K_{T 1}}{R} \frac{l t_{e 0}}{1+\alpha}-\frac{K_{T 0}}{R}\left(\frac{\alpha l}{1+\alpha}-2\right)\right], \quad K_{T 1}=\left.\frac{d K_{T}}{d t_{e}}\right|_{t_{e}=t_{e s}}, \\
\left.b_{1}\right|_{y=1}=\left[1+\frac{K_{T 1}}{R} \frac{l t_{e 0}}{1+\alpha}-\frac{K_{T 1}}{R}\left(1+\frac{\alpha l}{1+\alpha}\right)\right], \quad x_{e 0}=x_{e \infty} t_{e s}^{\alpha}, \tag{17}\\
\left.b_{2}\right|_{y=1}=\left(2 \frac{x_{e 0}}{x_{i 0}}-2 \frac{x_{e 0}}{x_{i 0}} \frac{C_{q}^{*}}{R}+b_{0}\right), \quad b_{5} \left\lvert\, y=1=\frac{b_{4}}{\Psi_{1}^{1}-2 \Psi_{1}}\right., \\
b_{3} \mid y=1 \\
=\frac{1}{b_{2}}\left(\frac{x_{e 0}}{x_{i 0}}+2 \frac{x_{e 0}}{x_{i 0}} \frac{C_{q}^{*}}{R}-b_{1}\right), \quad x_{i 0}=x_{i} t_{i s}^{\psi}, \quad t_{i s}=\left.\frac{T_{i 0}}{T_{e \infty}}\right|_{y=1}, \\
b_{6} \mid y=1
\end{gather*}=\int_{1}^{0} f_{0} d y /\left(B_{0}+\int_{1}^{0} f_{0} d y\right) . \quad .
$$

In Eqs. (17) Ψ_{1}^{I} and Ψ_{2}^{I} are the derivatives of the functions Ψ_{1} and Ψ_{2} with respect to y.
The mean surface temperature $t_{i s}$ is related to the mean relative temperature $t_{e s}$ by Eq. (18), in which $\ell(s)=\left.\ell\right|_{y=1}, t_{e s}=\left.t_{e 0}\right|_{y=1}, t_{i s}=\left.t_{i 0}\right|_{y=1}:$

$$
\begin{equation*}
\frac{x_{e n}}{x_{i 0}}-\frac{l^{(s)} t_{e s}}{1+\alpha}=b_{6} \frac{t_{i s}}{1+\gamma}, \quad t_{i s}=t_{e s}\left(1+\frac{K_{T 0}}{R} \frac{l^{(s)}}{1+\alpha}\right) . \tag{18}
\end{equation*}
$$

Expressions for the coordinates U_{r} and U_{θ} are obtained in the form of infinite series in Legendre and Gegenbauer polynomials, respectively. The resultant force acting on the particle is described by the first terms of these expansions:

$$
\begin{align*}
& U_{r}^{*}=\left(\mathbf{U}_{\infty} \mathbf{n}_{z}\right)\left(3 U_{3} a_{1}+U_{2} B_{2}^{\prime}+B_{1}^{\prime} a_{1}\right) \cos \Theta, \tag{19}\\
& U_{\theta}^{*}=-\left(\mathbf{U}_{\infty} \mathbf{n}_{z}\right)\left(\Phi_{3}+\Phi_{2} B_{2}^{\prime}+\Phi_{1} B_{1}^{\prime}\right) \sin \Theta . \tag{20}
\end{align*}
$$

Inasmuch as $k_{e} \ll \kappa^{\prime}$, the values of the coefficients ν and μ are estimated in the derivation of these equations according to the relations $\nu=\nu_{\infty} t_{e_{0}}^{1+\beta}$ and $\mu=\mu_{\infty} t_{\mathrm{e}}^{\beta}$.

The functions $\Phi_{1}, \Phi_{2}, \Phi_{3}, U_{2}, U_{3}$ and a_{1} in Eqs. (19) and (20) have the form

$$
\begin{gather*}
a_{1}=-\frac{1}{y^{3}} \sum_{n=0}^{\infty} \Theta_{n} t^{n}, \quad \Phi_{1}=\left(1+\frac{l}{2(1+\alpha)}\right) a_{1}+\frac{1}{2} y a_{1}^{\mathrm{I}}, \\
\Phi_{2}=\left(1+\frac{l}{2(1+\alpha)}\right) U_{2} a_{1}+\frac{1}{2} y\left(U_{2}^{\mathrm{I}} a_{1}+U_{2} a_{1}^{\mathrm{I}}\right), \\
\Phi_{3}=3\left(1+\frac{l}{2(1+\alpha)}\right) U_{3} a_{1}+\frac{3}{2} y\left(U_{3}^{\mathrm{I}} a_{1}+U_{3} a_{1}^{\mathrm{I}}\right), \tag{21}\\
U_{2}=\Gamma_{0}^{2}\left[\frac{1}{2 l^{2}}+\left(\delta_{1}-1\right) \frac{1}{l}+\ln l\left(\delta_{1}-\delta_{2}\right)+\sum_{n=1}^{\infty}\left(\delta_{n+2}-\delta_{n+1}\right) \frac{l^{n}}{n}\right], \\
U_{3}=\Gamma_{0}^{3}\left[\frac{1}{3 l^{3}}+\left(\frac{\varepsilon_{1}}{2}-1\right) \frac{1}{l^{2}}+\left(1-2 \varepsilon_{1}+\varepsilon_{2}\right) \frac{1}{l}+\ln l\left(-\varepsilon_{3}+2 \varepsilon_{2}-\right.\right. \\
\left.\left.-\varepsilon_{1}\right)+\sum_{n=1}^{\infty}\left(-\varepsilon_{n+3}+2 \varepsilon_{n+2}-\varepsilon_{n+1}\right) \frac{l^{n}}{n}\right] .
\end{gather*}
$$

In Eqs. (21) $\ell=\Gamma_{0} /\left(y+\Gamma_{0}\right), a \frac{I}{1}, U_{2}^{I}, U_{3}^{I}$, etc., are the y-derivatives of the corresponding functions. The values of the coefficients θ_{n}, δ_{n}, and ε_{n} are determined by means of recursion relations, in which $\theta_{0}=\delta_{0}=\varepsilon_{0}=1, \theta_{-\mathrm{n}}=\delta_{-\mathrm{n}}=\varepsilon_{-\mathrm{n}}=0$:

$$
\begin{gather*}
\Theta_{n \geqslant 1}=-\frac{1}{n(n+3)(n+5)}\left\{\left[(1-n)\left(3 n^{2}+13 n+8\right)+(n+2)(n+3) \gamma_{1}-\right.\right. \\
\left.\quad-(2+n) \gamma_{2}\right] \Theta_{n-1}+\left[(n-2)(n-1)(3 n+5)-2\left(n^{2}-4\right) \gamma_{1}+(n-2) \gamma_{2}+\right. \tag{22}\\
\left.+(n+3) \gamma_{3} \mid \Theta_{n-2}+\mathrm{I}(1-n)(n-2)(n-3)+(n-3)(n-2) \gamma_{1}-(n-2) \gamma_{3} i \Theta_{n-3}\right\},
\end{gather*}
$$

$$
\begin{align*}
& \varepsilon_{\substack{n \\
n \geqslant 1}}=-\frac{1}{n(n+2)} \sum_{k=0}^{n-1}\left\{\left[k^{2}+3 n^{2}-3 k n+7 n-5 k\right] \Theta_{n-k}+[2 n+k+4-\right. \\
& -2\left(k^{2}+3 n^{2}-3 k n\right)+(2+2 n-k) \gamma_{1}-\gamma_{2} \Theta_{n-k-1}+ \tag{23}\\
& \left.+\left[k^{2}+3 n^{2}-3 k n+4 k+6-9 n+(4+k-2 n) \gamma_{1}+\gamma_{3}\right] \Theta_{n-k-2}\right\} \varepsilon_{k}, \\
& \delta_{n}=-\frac{1}{(n+1)(n+3)}\left\{\sum _ { k = 0 } ^ { n - 1 } \left[\left(3 n^{2}+k^{2}-3 k n+10 n-6 k+3\right) \Theta_{n-k}+\right.\right. \\
& +\left(-6 n^{2}-2 k^{2}+6 k n-n+2 k+7+(3+2 n-k) \gamma_{1}-\gamma_{2}\right) \Theta_{n-k-1}+ \tag{24}\\
& \left.+\left(3 n^{2}+k^{2}-3 k n-9 n+4 k+6+(4-2 n+k) \gamma_{1}+\gamma_{3}\right) \Theta_{n-k-2}\right] \delta_{k}- \\
& \left.-3 \frac{(-h)(1-h) \ldots(n-1-h)}{n!}\right\} \text {, }
\end{align*}
$$

where

$$
\gamma_{1}=\frac{\beta-1}{1+\alpha}, \gamma_{2}=2 \frac{1+\beta}{1+\alpha}, \quad \gamma_{3}=\frac{2+2 \alpha-\beta}{(1+\alpha)^{2}}, \quad h=\frac{\beta}{1+\alpha} .
$$

The values of the coefficients B_{1}^{\prime} and B_{1}^{\prime} are determined by substituting U_{θ}^{*} and U_{r}^{*} in the boundary conditions (4) and (5). Once $B_{1}^{\prime 2}$ and B_{2}^{\prime} have been calculated, an equation for the total force F, acting on the particle is obtained by integrating the tensor of viscous stresses over the particle surface:

$$
\begin{equation*}
\mathbf{F}=\mathbf{F}_{\mu}+\mathbf{F}_{D}+\mathbf{F}_{T}+\mathbf{F}_{q}, \tag{25}
\end{equation*}
$$

where

$$
\begin{gather*}
\mathbf{F}_{\mu}=6 \pi R \mu_{\infty} f_{\mu 1}\left|U_{\infty}\right| ; \\
\mathbf{F}_{T}=-6 \pi R \mu_{\infty} v_{\infty} f_{T 1} \operatorname{grad} t_{e \infty} ; \\
\mathbf{F}_{D}=-6 \pi R \mu_{\infty} D_{\infty} f_{D 1} \operatorname{grad} C_{1 \infty} ; \tag{26}\\
\mathbf{F}_{q}=-6 \pi R \mu_{\infty} f_{q 1} \frac{v_{\infty}}{R^{3} x_{i} T_{e \infty}} \int_{V} \mathbf{r} q_{i} d V .
\end{gather*}
$$

The coefficients $f_{\mu 1}, f_{D_{1}}, f_{T_{1}}$, and $f_{q_{1}}$ in the equations for the viscous resistance of the medium \mathbf{F}_{μ}, the diffusophoretic force \mathbf{F}_{D}, the thermophoretic force \mathbf{F}_{T}, and the photophoretic force F_{q} can be evaluated according to the equations

$$
\begin{gather*}
f_{\mu 1}=\frac{U_{3}^{\mathrm{I}}+N_{1} \frac{C_{m}^{*}}{R}}{U_{2}^{\mathrm{I}}+N_{2} \frac{C_{m}^{*}}{R},} \tag{27}\\
f_{D 1}==\frac{2 K_{D s} t_{e 0}^{1+\omega}}{a_{1}\left(U_{2}^{\mathrm{I}}+N_{2} \frac{C_{m}^{*}}{R}\right)}\left\{\left(1+\frac{\beta_{R c}^{*}}{R}+\frac{\beta_{\beta_{c}^{*}}^{*}}{R}\right) \frac{\psi_{1}^{2} \psi_{2}^{\mathrm{I}}}{2 \psi_{1}-\psi_{1}^{\mathrm{I}}}\right\}, \tag{28}\\
f_{T_{1}}=\frac{2 t_{e 0}^{\beta-\alpha}}{3 a_{1}\left(U_{2}^{\mathrm{I}}+N_{2} \frac{C_{m}^{*}}{R}\right)}\left\{K _ { T _ { s } } \left[\left(1+\frac{\beta_{R}^{* \prime}}{R}+\frac{\beta_{B}^{*}}{R}\right)\left(1+b_{3}\right)+\right.\right. \\
\left.\left.+\left(-\frac{\beta_{R}^{*}}{R}-\frac{\beta \beta_{B}^{*}}{R}\right)\left(\left(\frac{\alpha l}{1+\alpha}-2\right)\left(1+b_{3}\right)+3\right)\right]+\frac{C_{0}^{*}}{R}\left(1+b_{3}\right)\left(N_{3}+N_{4} \frac{C_{m}^{*}}{R}\right)\right\}, \tag{29}\\
\quad f_{q 1}=\frac{t_{e 0}^{\beta}\left(b_{2} t_{0}^{*}\right)^{-1}}{2 \pi a_{1}\left(U_{2}^{\mathrm{I}}+N_{2} \frac{C_{m}^{*}}{R}\right)}\left\{K _ { T _ { s } } \left[1+\frac{\beta_{R}^{*}}{R}+\frac{\beta_{B}^{*}}{R}+\right.\right. \\
\left.\left.+\left(\frac{\beta_{R}^{*}}{R}-\frac{\beta_{B}^{*}}{R}\right)\left(\frac{\alpha l}{1+\alpha}-2\right)\right]+\frac{C_{0}^{*}}{R}\left(N_{3}+N_{4} \frac{C_{m}^{*}}{R}\right)\right\}, \tag{30}
\end{gather*}
$$

where

$$
\begin{gather*}
\left.N_{1}\right|_{y=1}=-\left(2+\frac{l}{1+\alpha}\right) U_{3}^{\mathrm{I}}-\left(U_{3}^{\mathrm{II}}+2 U_{3}^{\mathrm{I}} \frac{a_{1}^{\mathrm{I}}}{a_{1}}\right) ; \\
\left.N_{2}\right|_{y=1}=-\left(2+\frac{l}{1+\alpha}\right) U_{2}^{\mathrm{I}}-\left(U_{2}^{\mathrm{II}}+2 U_{2}^{\mathrm{I}} \frac{a_{1}^{\mathrm{I}}}{a_{1}}\right) ; \\
N_{3 \mid y=1}=\left(2+\frac{l}{1+\alpha}\right)+\frac{a_{1}^{\mathrm{I}}}{a_{1}} ; \tag{31}\\
N_{4 \mid y=1}=\frac{(2-l) l}{1+\alpha}-\left(2+\frac{l}{1+\alpha}\right) \frac{a_{1}^{\mathrm{I}}}{\alpha_{1}}-\frac{a_{1}^{\mathrm{II}}}{a_{1}} .
\end{gather*}
$$

In Eqs. (27)-(30) the quantities $C_{m}^{*}, C_{V}^{*}, K_{T}, K_{T s}, \beta_{R}^{* \prime}, \beta_{R}^{*}, K_{D s}, \beta_{R c}^{* \prime}, \beta_{B}^{*}$, and $\beta_{B c}^{*}$ are evaluated at $t_{e 0}=t_{e s}$. In the limit $\Gamma_{0} \rightarrow 0$ (small temperature differences in the vicinity of the particle) the coefficients $a_{1}=1, a_{1}^{\mathrm{I}}=-3, a_{1}^{\mathrm{II}}=12, U_{2}=0,5, U_{2}^{\mathrm{I}}=1, U_{2}^{\mathrm{II}}=1, U_{3}=$ $1 / 3, U_{3}^{\mathrm{I}}=1, U_{3}^{\mathrm{II}}=2, \quad N_{1}=2, \quad N_{2}=3, \quad N_{3}=-1, \quad N_{4}=-6, \quad \psi_{1}=1, \psi_{1}^{\mathrm{I}}=0, \quad \psi_{2}=1 / 3$, and $\psi_{2}^{\mathrm{I}}=1$.

Setting F equal to zero, we obtain an expression for the velocity U_{p} of ordered motion of the particle as the sum of the diffusophoretic velocity U_{D}, the thermophoretic velocity U_{T}, and the photophoretic velocity U_{q} :

$$
\begin{equation*}
\mathbf{U}_{p}=\mathbf{U}_{D}+\mathbf{U}_{T}+\mathbf{U}_{q} \tag{32}
\end{equation*}
$$

where

$$
\begin{gather*}
\mathbf{U}_{D}=-D_{\infty} f_{D 2} \operatorname{grad} C_{1 \infty} ; \quad \mathbf{U}_{T}=-v_{\infty} \gamma_{T 2} \operatorname{grad} t_{e \infty} ; \\
\mathbf{U}_{q}=-f_{q 2} \frac{v_{\infty}}{R^{3} \varkappa_{i} T_{e \infty}} \int_{V} \mathrm{r} q_{i} d V \tag{33}
\end{gather*}
$$

The form of the coefficients $\mathrm{f}_{\mathrm{D}_{2}}, \mathrm{f}_{\mathrm{T}_{2}}$, and $\mathrm{f}_{\mathrm{q}_{2}}$ is analogous to the form of the coefficients $f_{D_{1}}, f_{T_{1}}$, and $f_{q_{1}}$, except that the expression $\left[U_{2}^{1}+N_{2}\left(C_{m}^{*} / R\right)\right]$ must be replaced by $\left[U_{3}^{I}+N_{1}\left(C_{m}^{*} / R\right)\right]$ everywhere in front of the braces.

In Eqs. (26) and (33) r is a radius vector denoting the positions of points of the particle, and the integration is carried out over the entire volume of the particle.

The equations obtained for $F_{u}, F_{D}, F_{T}, F_{q}, \mathbf{U}_{D}, \mathbf{U}_{T}$, and \mathbf{U}_{q} can also be used to estimate the forces acting on the particle and the velocities of its ordered motion for an arbitrary, not necessarily azimuthally symmetric distribution of the density of heat sources in the particle volume and for arbitrary relative orientations of the vectors $\nabla t_{e^{\infty}}$ and $\nabla C_{1 \infty}$.

It follows from Eqs. (26) and (33) that the direction of the photophoretic force and velocity is determined by the direction of the dipole moment of the density of heat sources $\int_{V} r q_{i} d V$. If the dipole moment coordinate perpendicular to the direction of radiation transmission is not equal to zero, particles will be repulsed from (or drawn into) the radiation flow.

Fig. 1

Fig. 2

Fig. 3

Fig. 1. Coefficient $\varphi_{D_{2}}$ vs mean temperature $T_{i s}(K)$.
Fig. 2. Coefficient $\varphi_{T_{2}}$ vs mean temperature $T_{i s}(K)$.
Fig. 3. Coefficient φq_{2} vs mean temperature $T_{i s}(K)$.

To illustrate the dependence of U_{q} and U_{T} on T_{is}, Figs. 1 and 2 show curves relating the values of the coefficients $\varphi_{T 2}=f_{T 2} / f_{T 2} \mid T_{i s}=300 \mathrm{~K}$ and $\varphi_{q 2}=f_{q 2} /\left.f_{q 2}\right|_{T_{s}=300 \mathrm{~K}}$ to the values of $\mathrm{T}_{\text {is }}$ for large aluminum particles of radius $\mathrm{R}=15 \mu \mathrm{~m}$ suspended in pure nitrogen at a temperature $\mathrm{T}_{\mathrm{e}^{\infty}}=300 \mathrm{~K}$ and a pressure $\mathrm{P}_{0}=1 \mathrm{~atm}$. The values of $\varphi_{D_{2}}=f_{D_{2}} / f_{D 2} \mid T_{i_{\mathrm{s}}=300 \mathrm{~K}}$ are estimated in a vapor-air mixture with $\mathrm{C}_{1 \infty}=0.05, \mathrm{~T}_{\mathrm{e}^{\infty}}=300 \mathrm{~K}$, and $\mathrm{P}_{0}=1 \mathrm{~atm}$ (see Fig. 3). Curves 1-3 in Figs. 1-3 are plotted for $\alpha=\beta=\omega=1,0.7,0.5$, respectively. The values of $k_{i 0}$ are taken from [8] for $x_{i 0}=\left.x^{\prime}\right|_{T_{i s}=300 \mathrm{~K}}$. At $\mathrm{T}_{\mathrm{e} \infty}=300 \mathrm{~K}$ the coefficients $\mathrm{f}_{\mathrm{D}_{2}}, \mathrm{f}_{\mathrm{T}_{2}}$, and $\mathrm{f}_{\mathrm{q}_{2}}$, are equal to $\left.f_{D 2}\right|_{T_{i s}=300 \mathrm{~K}}=1.4 \cdot 10^{-1},\left.f_{T 2}\right|_{T_{i s}=300 \mathrm{~K}}=2.37 \cdot 10^{-4}$ and $\left.f_{q 2}\right|_{r_{i s}=300 \mathrm{~K}}=1.84 \cdot 10^{-1}$.

NOTATION

T_{e}, T^{\prime}, temperature of gas and particle; $\rho=\rho_{1}+\rho_{2}, \rho_{1}=n_{1} m_{1}, \rho_{2}=m_{2} n_{2} ; n_{1}, n_{2}$, concentrations of first and second components of gas mixture; m_{1}, m_{2}, masses of these components; $C_{1 e}=n_{1} / n, n=n_{1}+n_{2} ; U_{\theta}, U_{r}$, polar and radial components of mass flow velocity; $C_{m}^{*}, K_{D s}$, K_{Ts}, isothermal, diffusion, and thermal slip factors; K_{T}, temperature-jump coefficient; nz , unit vector in direction of z axis; q_{i}, density of heat sources in particle interior, which depend on spherical coordinates $r, \theta(0 \leq \theta \leq \pi)$; U_{∞}, gas flow velocity around particle ($\left.U_{\infty} \| O Z\right) ; R$, particle radius; $\left(\nabla \mathrm{T}_{\mathrm{e}}\right)$, $\left(\nabla \mathrm{C}_{1 \infty}\right)$, temperature and relative concentration gradients of first component of binary gas mixture; k^{\prime}, k_{e}, coefficients of kinematic and dynamic viscosity, diffusion, and thermal conductivity of particle and gas, respectively [$\nu=v_{\infty} t_{\mathbf{e}}^{\beta}$, $\mu=\mu_{\infty} t_{e}^{1+\beta}, D=D_{\infty} t_{e}^{1+\omega}, \kappa^{\prime}=\kappa_{i} t_{i}^{\gamma}, \kappa_{e}=\kappa_{\infty} t_{e}^{\alpha}$, where $\nu_{\infty}=v\left(T_{e^{\infty}}\right), D_{\infty}=D\left(T_{e \infty}\right), \mu_{\infty}=\mu\left(T_{e^{\infty}}\right)$,
 relative concentration, and pressure; $C_{m}^{*}, C_{V}^{*}, K_{T s}, K_{D s}, K_{T}, \beta_{R}^{* \prime}, \beta_{\mathrm{B}}^{*}, \beta_{R c}^{* \prime}$, and $\beta_{B c}^{*}$ are determined by methods of the kinetic theory of gases and can be taken from [1, 6, 7]; $\kappa_{i}=$ $\kappa^{\prime}\left(T_{e^{\infty}}\right) ; t_{e}=\frac{T_{e}}{T_{e^{\infty}}}, t_{i}=\frac{T^{t}}{T_{e^{\infty}}}$.

LITERATURE CITED

1. Yu. I. Yalamov and V. S. Galoyan, Dynamics of Droplets in Inhomogeneous Viscous Media [in Russian], Erevan (1985).
2. Yu. I. Yalamov, M. N. Gaidukov, and E. R. Shchukin, Inzh.-Fiz. Zh., 37, No. 2, 505-507 (1975).
3. E. R. Shchukin, Zh. Tekh. Fiz., 50, No. 6, 1332-1335 (1980).
4. S. P. Lin, J. Colloid Interface Sci., 51, No. 1, 66-74 (1975).
5. M. A. Kolosov, Attenuation of Laser Radiation in Hydrometeors [in Russian], Moscow (1977).
6. A. B. Poddoskin, A. A. Yushkanov, and Yu. I. Yalamov, Zh. Tekh. Fiz., 50, No. 1, 157169 (1980).
7. I. N. Ivchanko and Yu. I. Yalamov, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6, 5966 (1969).
8. A. S. Okhotin, R. P. Borovikov, T. V. Nechaev, and A. S. Pushkarskii, Thermal Conductivity of Solids (Handbook) [in Russian], Moscow (1984).
